Telegram Group & Telegram Channel
🟡 scikit-learn, UMAP и HDBSCAN теперь работают на GPU — без единой строчки изменений в коде

Команда cuML (NVIDIA) представила новый режим ускорения, который позволяет запускать код с scikit-learn, umap-learn и hdbscan на GPU без изменений. Просто импортируйте cuml.accel, и всё — можно работать с Jupyter, скриптами или Colab.

Это тот же «zero-code-change» подход, что и с cudf.pandas: привычные API, ускорение под капотом.

✔️ Сейчас это бета-версия: основное работает, ускорение впечатляющее, мелкие шероховатости — в процессе доработки.

✔️ Как это работает:
— Совместимые модели подменяются на GPU-эквиваленты автоматически
— Если что-то не поддерживается — плавный откат на CPU
— Включён CUDA Unified Memory: можно не думать о размере данных (если не очень большие)

Пример:
# train_rfc.py
#%load_ext cuml.accel # Uncomment this if you're running in a Jupyter notebook
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier

# Generate a large dataset
X, y = make_classification(n_samples=500000, n_features=100, random_state=0)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

# Set n_jobs=-1 to take full advantage of CPU parallelism in native scikit-learn.
# This parameter is ignored when running with cuml.accel since the code already
# runs in parallel on the GPU!
rf = RandomForestClassifier(n_estimators=100, random_state=0, n_jobs=-1)
rf.fit(X_train, y_train)


Запуск:
📍 python train.py — на CPU
📍 python -m cuml.accel train.py — на GPU
📍 В Jupyter: %load_ext cuml.accel

Пример ускорения:
📍 Random Forest — ×25
📍 Linear Regression — ×52
📍 t-SNE — ×50
📍 UMAP — ×60
📍 HDBSCAN — ×175

✔️ Чем больше датасет — тем выше ускорение. Но не забывайте: при нехватке GPU-памяти может быть замедление из-за подкачки.

🔗 Документация: https://clc.to/4VVaKg

Библиотека дата-сайентиста #свежак
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6378
Create:
Last Update:

🟡 scikit-learn, UMAP и HDBSCAN теперь работают на GPU — без единой строчки изменений в коде

Команда cuML (NVIDIA) представила новый режим ускорения, который позволяет запускать код с scikit-learn, umap-learn и hdbscan на GPU без изменений. Просто импортируйте cuml.accel, и всё — можно работать с Jupyter, скриптами или Colab.

Это тот же «zero-code-change» подход, что и с cudf.pandas: привычные API, ускорение под капотом.

✔️ Сейчас это бета-версия: основное работает, ускорение впечатляющее, мелкие шероховатости — в процессе доработки.

✔️ Как это работает:
— Совместимые модели подменяются на GPU-эквиваленты автоматически
— Если что-то не поддерживается — плавный откат на CPU
— Включён CUDA Unified Memory: можно не думать о размере данных (если не очень большие)

Пример:

# train_rfc.py
#%load_ext cuml.accel # Uncomment this if you're running in a Jupyter notebook
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier

# Generate a large dataset
X, y = make_classification(n_samples=500000, n_features=100, random_state=0)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

# Set n_jobs=-1 to take full advantage of CPU parallelism in native scikit-learn.
# This parameter is ignored when running with cuml.accel since the code already
# runs in parallel on the GPU!
rf = RandomForestClassifier(n_estimators=100, random_state=0, n_jobs=-1)
rf.fit(X_train, y_train)


Запуск:
📍 python train.py — на CPU
📍 python -m cuml.accel train.py — на GPU
📍 В Jupyter: %load_ext cuml.accel

Пример ускорения:
📍 Random Forest — ×25
📍 Linear Regression — ×52
📍 t-SNE — ×50
📍 UMAP — ×60
📍 HDBSCAN — ×175

✔️ Чем больше датасет — тем выше ускорение. Но не забывайте: при нехватке GPU-памяти может быть замедление из-за подкачки.

🔗 Документация: https://clc.to/4VVaKg

Библиотека дата-сайентиста #свежак

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6378

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

Dump Scam in Leaked Telegram Chat

A leaked Telegram discussion by 50 so-called crypto influencers has exposed the extraordinary steps they take in order to profit on the back off unsuspecting defi investors. According to a leaked screenshot of the chat, an elaborate plan to defraud defi investors using the worthless “$Few” tokens had been hatched. $Few tokens would be airdropped to some of the influencers who in turn promoted these to unsuspecting followers on Twitter.

What is Telegram Possible Future Strategies?

Cryptoassets enthusiasts use this application for their trade activities, and they may make donations for this cause.If somehow Telegram do run out of money to sustain themselves they will probably introduce some features that will not hinder the rudimentary principle of Telegram but provide users with enhanced and enriched experience. This could be similar to features where characters can be customized in a game which directly do not affect the in-game strategies but add to the experience.

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from us


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA